100 lines
3 KiB
Python
100 lines
3 KiB
Python
![]() |
import matplotlib.pyplot as plt
|
|||
|
import numpy as np
|
|||
|
from scipy import ndimage as ndi
|
|||
|
|
|||
|
from skimage.io import imread
|
|||
|
from skimage.util import img_as_float
|
|||
|
from skimage.filters import gabor_kernel
|
|||
|
|
|||
|
|
|||
|
def compute_feats(image, kernels):
|
|||
|
feats = np.zeros((len(kernels), 2), dtype=np.double)
|
|||
|
for k, kernel in enumerate(kernels):
|
|||
|
filtered = ndi.convolve(image, kernel, mode='wrap')
|
|||
|
feats[k, 0] = filtered.mean()
|
|||
|
feats[k, 1] = filtered.var()
|
|||
|
return feats
|
|||
|
|
|||
|
|
|||
|
def match(feats, ref_feats):
|
|||
|
min_error = np.inf
|
|||
|
min_i = None
|
|||
|
for i in range(ref_feats.shape[0]):
|
|||
|
error = np.sum((feats - ref_feats[i, :])**2)
|
|||
|
if error < min_error:
|
|||
|
min_error = error
|
|||
|
min_i = i
|
|||
|
return min_i
|
|||
|
|
|||
|
|
|||
|
sigma = 10 # 1 - 10
|
|||
|
frequency = 0.35 # 0.05 - 0.35
|
|||
|
|
|||
|
|
|||
|
kernels = []
|
|||
|
for theta in range(4):
|
|||
|
theta = theta / 4. * np.pi
|
|||
|
kernel = np.real(gabor_kernel(frequency, theta=theta, n_stds=sigma))
|
|||
|
kernels.append(kernel)
|
|||
|
|
|||
|
|
|||
|
shrink = (slice(0, None, 3), slice(0, None, 3))
|
|||
|
disc = img_as_float(imread("discord-logo.png", as_gray=True))[shrink]
|
|||
|
feng = img_as_float(imread("Feng_wind.jpg", as_gray=True))[shrink]
|
|||
|
vazka = img_as_float(imread("vazka.png", as_gray=True))[shrink]
|
|||
|
image_names = ('Discord', 'Znak', 'Vážka')
|
|||
|
images = (disc, feng, vazka)
|
|||
|
|
|||
|
# prepare reference features
|
|||
|
ref_feats = np.zeros((3, len(kernels), 2), dtype=np.double)
|
|||
|
ref_feats[0, :, :] = compute_feats(disc, kernels)
|
|||
|
ref_feats[1, :, :] = compute_feats(feng, kernels)
|
|||
|
ref_feats[2, :, :] = compute_feats(vazka, kernels)
|
|||
|
|
|||
|
def power(image, kernel):
|
|||
|
# Normalize images for better comparison.
|
|||
|
image = (image - image.mean()) / image.std()
|
|||
|
return np.sqrt(ndi.convolve(image, np.real(kernel), mode='wrap')**2 +
|
|||
|
ndi.convolve(image, np.imag(kernel), mode='wrap')**2)
|
|||
|
|
|||
|
# Plot a selection of the filter bank kernels and their responses.
|
|||
|
results = []
|
|||
|
kernel_params = []
|
|||
|
for theta in range(0, 10):
|
|||
|
theta = theta / np.pi
|
|||
|
kernel = gabor_kernel(frequency, theta=theta)
|
|||
|
params = f"Θ={18*(theta*np.pi):.0f}°"
|
|||
|
kernel_params.append(params)
|
|||
|
# Save kernel and the power image for each image
|
|||
|
results.append((kernel, [power(img, kernel) for img in images]))
|
|||
|
|
|||
|
fig, axes = plt.subplots(nrows=len(results)+1, ncols=len(image_names)+1, figsize=(4, 9))
|
|||
|
plt.gray()
|
|||
|
|
|||
|
fig.suptitle(f'Gaborovy filtry\n pro λ={frequency}, ϕ={0}, σ={sigma} a γ={1}.', fontsize=12)
|
|||
|
|
|||
|
axes[0][0].axis('off')
|
|||
|
|
|||
|
# Plot original images
|
|||
|
for label, img, ax in zip(image_names, images, axes[0][1:]):
|
|||
|
ax.imshow(img)
|
|||
|
ax.set_title(label, fontsize=9)
|
|||
|
ax.axis('off')
|
|||
|
|
|||
|
for label, (kernel, powers), ax_row in zip(kernel_params, results, axes[1:]):
|
|||
|
# Plot Gabor kernel
|
|||
|
ax = ax_row[0]
|
|||
|
ax.imshow(np.real(kernel))
|
|||
|
ax.set_ylabel(label, fontsize=7)
|
|||
|
ax.set_xticks([])
|
|||
|
ax.set_yticks([])
|
|||
|
|
|||
|
# Plot Gabor responses with the contrast normalized for each filter
|
|||
|
vmin = np.min(powers)
|
|||
|
vmax = np.max(powers)
|
|||
|
for patch, ax in zip(powers, ax_row[1:]):
|
|||
|
ax.imshow(patch, vmin=vmin, vmax=vmax)
|
|||
|
ax.axis('off')
|
|||
|
|
|||
|
plt.show()
|